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ABSTRACT

Lung segmentation is an important first step for quantitative lung CT im-

age analysis and computer aided diagnosis. However, accurate and automated lung

CT image segmentation may be made difficult by the presence of the abnormalities.

Since many lung diseases change tissue density, resulting in intensity changes in the

CT image data, intensity-only segmentation algorithms will not work for most patho-

logical lung cases. This thesis presents two automatic algorithm for segmentation of

pathological lung. One is based on the geodesic active contour, another method uses

a graph search driven by a cost function combining the intensity, gradient, boundary

smoothness, and the rib information. The methods were tested on several 3D tho-

rax CT data sets with lung disease. Given the manual segmentation result as gold

standard, we validate our methods by comparing our automatic segmentation results

with Hu’s method. Sensitivity, specificity, and Hausdorff distance were calculated to

evaluate the methods.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Segmentation refers to the process of finding the boundary of the objects in

the image. Why do we need to do lung segmentation in computed tomography (CT)

images? Lung segmentation is very important since it is the first step for further

quantitative lung analysis in computer aided diagnosis, such as lung volume measure-

ment, texture analysis for certain diseases detection. An accurate lung segmentation

result is required in order to detect the abnormalities in the next step. For example,

it is unlikely to detect a nodule if the nodule is failed to be segmented as lung tissue

in the first segmentation step.

After understanding the significance of the lung segmentation, then how can

we segment the lung in the CT images? Undoubtedly, manual segmentation is one

of the solutions. Humans are very smart, technologists could use lots of underlying

information and their knowledge to get an accurate segmentation result. However, it

takes a well trained technologist around 36 seconds to trace the lungs boundary on

one slice (512*512 pixels), so 5 hours to finish one 500 slices CT image. Moreover,

according to the 2007 New England Journal of Medicine study, 19.2 million lung CT

was done every year. And most of the CT data sets have a size range from 512∗512∗

450 to 512∗512∗600 according to the respiratory phase. Thus, with the advancement

of the CT facilities and the overwhelming number of CT data sets produced every year,

manual segmentation is obviously not a practical solution since it is time-consuming

and requires lots of tedious work. Hence, semi-automatic segmentation methods
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[13, 14] appeared, speeded up the whole segmentation process and saved radiologists

from repetitive work. But it still needs some manual interaction. Thanks to the

continuous efforts that the image processing genius made to the lung segmentation

field, a large number of automatic lung segmentation algorithms [12, 35, 2, 5, 17, 30]

are proposed.

However, accurate and automated lung segmentation in CT images is highly

challenged by the presence of the abnormalities. Since lung diseases will change the

tissue density which will cause the gray level changes in CT images, gray level based

lung segmentation algorithms [12, 35, 2, 5] will not work for most pathological lung

cases (Fig 1.1). Although many other methods [23, 26, 31, 22, 1, 8, 32] are suggested

to segment pathological lung CT images, finding an efficient, robust and accurate

automatic pathological lung segmentation algorithm is still an unsolved problem.

1.2 Background

1.2.1 Lung Imaging

1.2.1.1 Radiography

X-ray is an electromagnetic ray discovered by Wilhelm Conrad Roentgen in

1895. X-rays have an energy in the range of 0.12 kev to 120 keV and a wavelength

in range of 10 to 0.010 nm. X-rays are generated in an X-ray tube where the elec-

trons released from a cathode are accelerated by the high voltage, and then collide

with the anode target. During the collision, two different atomic processes happen:

bremsstrahlung and x-ray fluorescence. A continuous spectrum of X-rays is created

by bremsstrahlung when the electrons are scattered by the strong electric field near

the nuclei. Distinctive frequency X-ray photons are emitted when the electron have
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Figure 1.1: Examples of lung CT images. From left to right: transverse view image,
transverse view image overlapped with intensity-based lung segmentation algorithm
result(red mask). First row: pathological lung CT data set; second row: normal lung
CT data set. An example of pathological lung region is pointed by the blue arrows
which make the segmentation difficult.
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enough energy to knock out an orbital electron, and higher-energy-level electrons fill

up the vacancy.

Radiography is an imaging technique that is widely used in medical, security,

non-destructive testing, archeology and food inspection. It uses X-rays to allow imag-

ing of the internal features. X-rays are projected to the object, and then absorbed

more or less when crossing the object, finally the remaining X-rays are captured by

the detector or the X-ray sensitive film to form the 2D image. In the chest X-ray

image, bones are always brighter than the soft tissue because compared with the soft

tissue, bones have a higher calcium, potassium, magnesium, and phosphorus percent-

age which will result in a higher electron density and a larger attenuation coefficient.

2-D chest radiography is a type of radiography used to diagnose the conditions

of organs in the chest area, such as emphysema, lung cancer and pneumonia. However,

interpretation of images is highly challenged by the superposition of the anatomical

structures. Thus, for some diseases, chest radiography is good for screening but not

for diagnosis. To overcome this disadvantage, computed tomography was invented to

obtain a cross-sectioned image.

1.2.1.2 X-ray Computed Tomography

Computed tomography is a medical imaging technique invented by Godfrey

Hounsfield and Allan McLeod Cormack in 1972 based on the Radon transform. The

basic principle behind CT is that the two-dimensional internal structure of an ob-

ject can be reconstructed from a series of one-dimensional ”projections” of the object

acquired at different angles. The intensities of these projection signals are dictated

by a two-dimensional distribution of tissue attenuation coefficients within the slice.
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Multiple two-dimensional X-ray image slices are acquired to reconstruct the 3D vol-

ume CT image. Each pixel value of CT image represents the X-ray mass attenuation

coefficient or the tissue electron density at each position.

Why is CT so popular in the lung imaging field? CT employs ionizing radiation

X-ray which may cause DNA damage and an increased lifetime risk of cancer. Hence,

CT is not recommended for children and pregnant women unless it is necessary.

Moreover, the main issue within radiology today is to find a good balance between

controlling dose and obtaining enough information for reliable diagnosis. However,

CT is faster, less sensitive to patient movement and can be still performed for persons

with implanted medical devices. Hence, CT is a more appropriate imaging method

for motional organs, such as lungs. Meanwhile, magnetic resonance imaging (MRI) is

noninvasive and gives a more clear and detailed image of soft tissue, such as brains,

internal pelvic organs, knees or shoulders. In addition, ultrasound imaging technology

is safe and real-time, thus it is widely used to visualize muscles, tendons, and many

internal organs in order to measure their size, structure and abnormalities.

A chest CT scan acquired by state-of-the-art CT scanners usually has isotropic

resolution of around 0.5 mm. Generally, it contains over 400 slices, where each slice

has a size of 512 by 512 pixels. For detailed description of CT and its application

[25] is a valuable source. Fig1.2 shows the three different views of a chest CT scan.

1.2.2 Pulmonary Anatomy

Lungs are the major organ of the respiratory system (Fig 1.3). They take

a major role in oxygen and carbon dioxide exchange between an organism and the

external world. There are two lungs, the left and the right. Left lung is further
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Figure 1.2: Example of a chest CT scan

* Source: First row(from left to right): the transverse view, the coronal view, the
sagittal view, the 3D human anatomy planes which is from {33}; the second row(from
left to right): 3D rendering of the lung anatomy, transverse view slice.
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divided into two lobes, the upper and the lower one, while right lung is divided into

three lobes, the upper, the middle and the lower lobes. The airway starts from the

trachea, and then divides into the two bronchi, each enters one lung. Within the

lung, the airway further divides in to narrower and shorter tubes, and finally connect

to the alveoli, the air-containing sacs. Parenchyma is the essential tissue of the lung

which includes bronchioles, bronchi, blood vessels, interstitium, and alveoli.

Figure 1.3: the pulmonary anatomy.

* Source: The left figure is from {9}, and the right figure is from {10}

Human rib cage consists of 24 ribs, the thoracic vertebrae, the sternum, and

the costal cartilages. Covered by the pleura and then the rib cage, the left and the

right lungs are separated by the heart and mediastinum within the ribcage. The apex

of each lung extends up to the lowest part of the neck, while the bottom of each lung

extends down to the diaphragm. During the inhalation, the expansion of the rib cage

and the flatten of the diaphragm cause the the airway sub-atmospheric pressure and
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the influx from the environment into the lung. During the exhalation, the relax of the

rib cage and the diaphragm cause the recoil of the rib cage and the influx from the

lung to the environment. Hence, the rib cage and the lung outer boundary is always

very close in all lung respiratory phases.

1.2.3 Lung Disease

The term lung disease Fig 1.1 refers to the any disorder or disease that occurs

in the lungs or that causes the lungs to not work properly. Generally, lung diseases

are divided into three categories: 1) lung tissue disease, such as pulmonary fibrosis,

lung cancer and sarcoidosis; 2) airway disease, for example, asthma, emphysema, and

chronic bronchitis; 3) Pulmonary circulation diseases, such as blood vessel inflamma-

tion. Actually most lung diseases involve a combination of these categories.

According to the latest report [24] by the American Lung Association, lung

disease is the third leading cause of death in the United States, taking around 40

million American lives every year. Lung disease and other lung infections and illnesses

are the number one killer of infants. The precise cause of many lung diseases is still

unknown. But the widely known influence factors includes smoking, air pollution,

radon gas, and asbestos.

Pulmonary function tests use a spirometer to measure the amount and the

speed of air that a subject can breathe in and out during a pre-determined period

of time. Pulmonary function tests are useful and harmless diagnostic tools for early

disease detection, such as asthma, bronchitis, cystic fibrosis, and emphysema. In

addition, chest X-ray, CT, bronchoscopy, biopsy of the lung or pleura, and ventilation

- perfusion scan are also widely used to detect lung diseases.
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1.3 Previous Work

The first articles about computer analysis of 2D chest X-ray radiography ap-

peared in the 1960s [4, 20]. Becker’s group employed computers to perform automatic

lung diagnosis. Since then many approaches have been proposed to segment lung au-

tomatically in 3D thorax CT images. And lung segmentation algorithms could be

divided into several categories: (1)intensity-based method, (2)statistical approach,

(3)registration-based method, (4)anatomical knowledge based approach, (5) other

innovative methods.

Since lungs contain a significant volume of air and lung tissues appear dark

in the CT images (Fig 1.2), conventional lung segmentation algorithms [12, 35, 2, 5]

based on the gray level are the most common and straight forward method. For

example, Hu et al. presented a threshold-based region-filling algorithm to segment

the lung region [12]. Zheng et al. proposed a 3D thresholding method based on

histogram characteristics [35]. Although conventional lung segmentation algorithms

are simple and quick, they may fail to deal with the low contrast cases, such as

pathological lung cases with cystic fibrosis.

Statistical models have been applied to obtain the lung boundary. For exam-

ple, Li et al. obtained a 3-D active shape model based on the training data sets and

treat it as an initial segmentation, then the result is refined according to the fine de-

tails and shape variance captured by snake [17]. Van Ginneken et al. [30] proposed

an active shape model followed by a KNN classifier as a refinement process. These

statistical methods always require a large number of training data and are computa-

tional expensive. Moreover, in order to deal with the pathological lung segmentation

El-BaZ et al. [1, 8] proposed a new stochastic framework for accurate lung segmenta-



www.manaraa.com

10

tion. The stochastic framework contains two probabilistic models:a linear combined

Gaussian model is used to estimate the image intensity, while the Markov Gibbs ran-

dom field is used to model the spatial interaction of the neighborhood pixels. Based

on these two models, El-BaZ et al. [1] convert the segmentation problem into a min

cut graph problem. Thus, the final segmentation result is the optimized solution that

minimize the energy function. This novel approach does better with the abnormal

lung tissue than intensity-based algorithms. Based on the same two models, Ayman

and El-BaZ et al. [8] also tried to use expectation maximization algorithm followed

by iterative refinement to obtain the lung region. This algorithm works better in

low dose CT image than iterative thresholding method, although there are still small

errors near the boundary.

Sluimer et al. showed a refined registration based segmentation approach. It

registers a probabilistic atlas to target image to obtain initial segmentation, and

then use KNN classifier to refine the boundary based on image features [26]. This

method has a significant improvement in segmentation accuracy compared to a stan-

dard segmentation-by-registration approach and it can deal with most pathological

cases. However, it is very time-consuming due to the CT image registration and

classification processes. Van Rikxoort et al. improved this method by adding an

error detection step so that refined registration based segmentation method is only

implemented if conventional lung segmentation algorithm fails [31].

Anatomical knowledge based method uses other anatomical structures infor-

mation to obtain the segmentation result. For example, in 1999 Brown et al. proposed

a knowledge based lung segmentation method [6]. The key components of the seg-

mentation system is the anatomical model, the inference engine and image processing
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routines. Segmentation process is deduced to matching the extracted objects from

the image to the objects in the model. Later, Prasad et al. [22] proposed using rib

curvature to help the lung segmentation result. This method can obtain more accu-

rate segmentation than iterative thresholding for pathological lung cases, but 2D ribs

curvature information cannot well define the lung apex and lung base region.

Large number of other innovative lung segmentation methods have been sug-

gested. Pu et al. [23] suggested an adaptive border marching approach to robustly

correct missed juxtapleural nodules while minimizing under-segmentation and over-

segmentation relative to the true lung border. However, it may fail to include areas

in the lung affected by interstitial disease because these areas missed in the initial

segmentation step are so large that convex shape information could not help. Wang

et al. reported a texture analysis-based method for accurate severe interstitial disease

lung segmentation [32]. And many other image segmentation algorithms are applied

to segmentation the lung in the CT image, such as watershed algorithm [16], wavelet

transform [29].

Meanwhile, graph based segmentation method becomes more and more pop-

ular these days. Li et al. [18] proposed a graph search based framework to obtain

globally optimal surface which was widely employed to segment 3D objects in medical

images, such as airway, vascular wall layer, bone and cartilage, bladder, and prostate.

Yin et al. suggested to use electric field direction lines for graph column construction,

and this method was applied to bone and cartilage segmentation [34]. Garvin et

al. proposed a graph search method that combined region information into the cost

function, and this method was applied to the intraretinal layers segmentation of mac-

ular optical coherence tomography images [11]. Song et al. suggested to combine the
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prior shape information into the graph arc weight, and the new graph search method

was applied to segment the bladder and prostate [27].

1.4 Our Work

Although a few algorithms have been also suggested to deal with pathological

lung segmentation in volumetric CT images, such as the registration based method,

the rib curvature based approach, the texture analysis based method, novel stochastic

model based approach and the adaptive border marching method, they are either time

consuming or only fit for certain kind of disease lungs.

Our work proposed two methods to deal with the pathological lung segmenta-

tion: geodesic active contour based pathological lung segmentation in section 2.2 and

graph search based lung segmentation in section 2.3. Then we compared the results

of three methods (Hu’s method, geodesic active contour based method, and graph

search based method) in chapter 3 and chapter 4.

For the geodesic active contour based method, a standard anatomical model

(atlas) is constructed by calculating the probability map from the registration result

of ten normal segmented lungs and ribcages. This approach is consisted of four steps.

Firstly, iterative threshold based region growing algorithm followed by a dilation is

used to obtain the initial lung segmentation. Secondly, after identification of the

ribcage by thresholding, inter-subject registration between the ribcage in the model

and the ribcage of the target image is applied to obtain a transformation matrix,

then based on the transformation matrix the lung probability map of the standard

anatomical model is warped to the target image to obtain a region of interest prob-

ability map. Thirdly, by combining the gradient information, probability map and
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other anatomical structures location information, speed image is obtained for the

geodesic active contour method. Finally, geodesic active contour is applied to shrink

the initial lung segmentation to the true boundary according to the speed image.

For the graph search based lung segmentation method, the aim of our work

is to adjust the graph search algorithm to automatically segment severe pathological

lung from CT images. The framework is consisted by three steps. The first step is

the conventional intensity based lung segmentation to obtain an initial segmentation.

The second step is other anatomical structures detection. The third step is combining

gray level, boundary smoothness, anatomical information, as well as gradient to refine

the lung segmentation result.
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CHAPTER 2
METHODS

2.1 Overview of the Method

As mentioned in chapter 1, lung segmentation is the first step for computer-

aided diagnosis. An accurate lung segmentation is prerequisite for further quantitative

analysis and abnormal tissue detection. However, automatic lung segmentation in CT

images is highly challenged by the presence of the abnormally dense tissue. Our work

tries to solve this problem by developing an automatic pathological lung segmentation

approach.

Our work is an extension of Hu’s Method [12]. Our approaches combines

intensity, anatomical information, and gradient to obtain the accurate lung mask.

Since the rib cage and the outer lung boundary are very close, rib cage information

could guide the lung segmentation process.

Geodesic active contour based method consists of four stages (Figure 2.1):

(1) lung pre-segmentation: optimal thresholding is applied to obtain the lung

mask, dynamic programming is used to separate the left lung and the right lung ;

This step is similar to Hu’s method work;

(2) atlas-based registration: a rib and lung atlas is constructed, inter-subject

rib cage registration is employed to map the standard lung probability atlas to the

target CT image to obtain a lung region probability map;

(3) Boundary adjustment: geodesic active contour is applied to combine the

smoothness, the lung shape information, the gradient information, and the anatomical

rib cage information to obtain the left and the right lung regions;
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(4) Post processing: the largest component analysis and opening is employed

to obtain the final result.

Graph search based method consists of three stages (Figure 2.2):

(1) lung pre-segmentation: this step is based on Hu’s method which is briefly

summarized in subsection 2.2.1. It provides an approximate lung segmentation for

the graph construction;

(2) Cost Function Computation: Based on the extracted feature informa-

tion(intensity, gradient, surrounding anatomical information), kNN classifier is em-

ployed to compute voxels’ unlikelihood of belonging to the lung boundary which will

be used to calculate the cost function in graph;

(3) Boundary adjustment: graph search algorithm is used to adjust the bound-

ary to obtain globally optimal segmentation surface by minimizing the cost function.

2.2 Geodesic Active Contour based Segmentation

2.2.1 Pre-segmentation - Hu’s Method

Figure 2.3 shows an overview of Hu’s method algorithm.

2.2.1.1 Lung Extraction

Lung extraction [12] consists of three steps: optimal thresholding, connectivity

and topological analysis, and airway deletion.

Optimal thresholding is applied to obtain the initial lung segmentation. Op-

timal thresholding algorithm selects a threshold value that is statistically optimal

according to the image contents. Threshold Ti is obtained iteratively according to

the following formula: Ti+1 =
A0 + A1

2.0
. A0 is the mean gray-level of the body voxels,

A1 is the mean gray-level of non-body voxels (the lung and air surrounding the body)
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Figure 2.1: Geodesic active contour based segmentation method’s algorithm flow
chart.
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Figure 2.2: Graph search based lung segmentation method’s algorithm flow chart.

Figure 2.3: Hu’s method algorithm flow chart overview.



www.manaraa.com

18

when using T1 as threshold level. Iterative thresholding is repeated until there is no

change in the threshold.

After obtaining the non-body voxels, 3-D connected component analysis is

employed to find the lung area. Air outside the body is eliminated since these voxels

are connected to the border of the image. Lung voxels are extracted since lungs are

the two largest components with low gray-level and large volume greater than the

pre-defined minimum volume threshold.

The trachea is identified using slice by slice region growing. The seed for region

growing is detected by searching for the large, circular, air-filled region near the first

few slices. The slice by slice region growing stops when the size of the region on

the new slice increases dramatically, which means the airways have merged to the

lung. After the extraction of the trachea and the left and right main bronchi from

the image, the lung region is obtained by deleting the main airway.

2.2.1.2 Lung Separation

Dynamic programming is applied to separate the left lung and the right lung.

Gray-level is combined into the cost function, the search region on every slice is

defined by the propagation of the search region on the former slice. The 2-D erosion

is used to separate the left and right lungs, and 2-D dilation is employed to find the

initial search region where the separation of the left and right lungs might occur.

Post processing is applied to improve the final segmentation result. Here, a

shape boundary smoothing step is added to obtain a smooth lung boundary, especially

for the blood vessels near the mediastinum. Morphological closing operation is used

to smooth the indentations near the mediastinum. Erosion is used to disconnect the
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airway from the lung region, and then the largest connected component is applied to

find the lung area, dilation is employed to restore the original approximate boundary.

2.2.2 Atlas-Based Registration

Due to the run time, this step is optional. If the gradient fail to provide the

lung boundary information, the registration result near the spine location would be

combined to the geodesic active contour speed image.

2.2.2.1 Atlas Construction

The thorax CT imaging of a normal subject is chosen to be the fixed image for

registration process. Thresholding followed by largest component analysis is applied

to identify the rib cage since bone structures are always bright in CT images. Hu’s

method is employed to segment the lung region. The following figure 2.4 shows the

3D view of the fixed image used in our method which is consisted of lung region

and rib cage with different labels. Figure 2.5 gives an example of the inter-subject

registration process based on the rib information. In addition, figure 2.6 shows the

lung region probability map (the probability of each voxel to be the lung region) by

registering 10 normal thorax CT images based on the rib information.

2.2.2.2 Registration of Atlas

Registration is an optimization problem of finding the correspondence between

different images by minimizing the pre-defined cost function. Generally, the registra-

tion framework is consisted from 4 components: metric, transformation, interpolator,

optimizer. For the metric part, there are many choices, such as mean squares, nor-

malized correlation, mutual information. For the transformation part, we can choose
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Figure 2.4: 3D view of a normal subject’s Ribcage and Lung which is used as fixed
image for atlas construction process in our method.

translation, rotation, scaling, affine, BSpline, other splines, etc. Optimizer is highly

related to the efficiency of the converge of the registration. The most common one

is the gradient descent optimizer. Regarding the interpolator, nearest neighborhood

interpolator is always chosen for mask images, while the linear and BSpline interpo-

lators are always chosen for CT images.

For this work, Elastix is used to warp the lung region probability map to

the new target image by registering the rib cage. Elastix is a registration toolkit

developed in 2001 by Stefan Klein, Josien P.W. Pluim, and Marius Staring. It is

composed of various transformation matrices (rigid, non-rigid, affine), metrics (mutual

information, mean square difference etc.), interpolators (nearest neighborhood, linear,

BSplines etc.), optimization methods (gradient descent etc.).

In our work, affine followed by BSpline transformation is used to register the

ribcage of the atlas to the ribcage of the new CT thorax image. Firstly, affine trans-

formation is applied to register the ribcage of the atlas and the ribcage segmentation
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Figure 2.5: Rib information based Registration .
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Figure 2.6: Ribcage and Lung combined Atlas used in our method.

result of the new target image. Then, BSpline transformation is used to make small

regional adjustments so that the two ribcages can overlap most of the region. Trans-

formation matrix obtained from affine and BSpline rib cage registration is used to

warping the lung region probability map of the atlas to the new target CT image.

For the metric component, advanced mean squares metric is used since the

registration happens between two ribcage mask images. BSpline interpolator is ap-

plied to obtain a smooth and good intensity quality of the result image. In addition,

quasiNewtonLBFGS is chosen as the optimizer. Multi-resolution is employed to speed

up the registration process, with image pyramid schedules 842 in each direction. Max-

imum iteration is 200, the maximum step length of the optimizer is (8.0, 4.0, 2.0), and

the minimum step length of the optimizer is (0.5, 0.2, 0.2).

2.2.3 Boundary Adjustment

Deformable contour models could be divided into two groups [28]: the snakes

and the geodesic active contour levelset. The snakes uses parametric model to repre-

sent the borders which might have intersection boundary segmentation result, while
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the geodesic active contour employs the geometric deformable models to overcome

this problem.

In our work Geodesic Active Contour is used to adjust the left and right lung

boundaries separately. And the distance transform of Hu’s method segmentation

result serves as the initial segmentation for the Geodesic Active Contour, and inverse

gradient information in the low intensity and high lung probability region serves as

the speed image.

2.2.3.1 Initial Model Calculation

Initial model determines the converge of the geodesic active contour process

as well as the final segmentation result. If the initial segmentation is very far away

from the actual boundary, then it will take long time for the geodesic active contour

converges. And the shape of the initial model will also influence the final segmentation

shape. Thus, choose an initial model which is not too far away from the right answer

is important.

In our work, initial left lung and right lung segmentation results obtained from

the first step are dilated separately in order to make sure both the initial segmentation

covers all lung possible region. After that, distance transform is applied to the dilated

lung masks. The distance transform result serves as an initial model for the geodesic

active contour.

2.2.3.2 Speed Image Calculation

The speed image plays a very important role in curve evolution process. It

controls the curve evolution speed. Thus, choosing an appropriate speed image is the

key of the geodesic active contour. It will also influence the efficiency of the algorithm
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Figure 2.7: An example of initial model. From the left to the right, from the top to the
bottom the figures are: the original CT image overlapped with pre-segmentation re-
sult(red), the original CT image overlapped with dilated right lung pre-segmentation
result(red), the distance transform(gray-level image) overlapped with the dilated right
lung, original CT image overlapped with the geodesic active contour result, the orig-
inal CT image overlapped with dilated left lung pre-segmentation result(red), the
distance transform(gray-level image) overlapped with the dilated left lung
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and the accuracy of the final segmentation result.

In this work, main airway mask is approximately extracted by using threshold-

ing followed by morphological opening operations. The lung region probability map

detected from the atlas registration step is used to calculate the gradient. Thus, gra-

dient calculation is only applied to the voxels inside the region where the probability

is large than zero in the probability map and outside the main airway mask. After

that, a low-pass filter shape function is employed to invert the gradient information.

Fig 2.8 shows the transverse view of a speed image. In addition, given an CT image

I(x, y, z), the speed image function S(x,y,z) follows:

G(x, y, z) =

√
∂I

∂x

2

+
∂I

∂y

2

+
∂I

∂z

2

(2.1)

S(x, y, z) =





1
1+expG(x,y,z)−α for I > 0

1, otherwise

(2.2)

where, α is set as 30.

2.2.3.3 Geodesic Active Contour

Geodesic active contour is an object boundaries detection approach introduced

by Caselles [7] and Malladi [19]. The basic idea of the geodesic active contour is

the iterative active contours evolution according to the intrinsic geometric measures

of the image. The evolution direction is along the curve normal direction with the

speed force given by P(C)

∂C(s, t)

∂t
= V (C)n = (P (C)(k + w)− < 5P, n >)n (2.3)
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Figure 2.8: An example of speed image (dark to white corresponds to zero to one)
overlapped with the initial segmentation(red).

where s is the arc length of the curve C, t is the curve evolution iteration

number (for example the initial curve is C(s,0)), V(C) is the evolution speed which is

dependent on the local information. The segmentation result depends on the curve

evolution speed function a lot. The right equation shows a basic version of the speed

function, where k is the curvature, w is the balloon force, n is the unit normal. 5P is

an attraction force projected on the normal direction. This attraction force is added

in order to balance other terms and stop the curve when the curve reaches close to the

boundary. In our work, the balloon force is -10 which means the initial segmentation

boundaries are shrinked down to the actual lung boundaries.

Although we know the curve evolution speed of every voxel from the speed

image, the curve evolution execution process remain unclear. However, the higher-

dimensional function, the level set function, is used to represent the curve at different
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fixed time point (or say, after different number of iterations). The following figure

2.9 gives an example of curve evolution process, the red 3-D object is the level set

function, the grey images shows the curves after fixed number of iterations.

Figure 2.9: Curve evolution example. The figure is the from [3]

2.2.4 Post-Processing

Instead of using morphological opening, the 3-D connected component analysis

is applied to both left lung and right lung geodesic active contour result images.

The largest component identified in each result is the lung region. 3-D connected

component is a better way to get rid of other noise points since morphological opening

with large structures will cause the information loss and smoothing of the sharp

corner.
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After that, left lung mask and right lung mask are added together. For some

cases, especially TLC cases, if the overlap of the left lung and right lung occurs, then

erosion is applied to search where left lung and right lung separates, and dynamic

programming is applied to obtain a nice cut between left and right lungs.

2.3 Graph Search based Segmentation

2.3.1 Rib Convex Hull Construction

Rib and spine identification is consisted of three steps: thresholding, hough

transform and 3-D curve fitting. Threshold level in this work is 120 Hu since bone

structures are always dense and much brighter than the lungs and muscle tissue.

Hough transform followed by 3-D curve fitting is applied to detect the spinal cord

region.

The spinal cord is a long tube that contains nervous tissue and support cells

which are relatively darker than the vertebra in CT images. From the transverse view

of thorax CT images, we can see a dark circle in the spinal cord region on almost each

slice. Since the shape and size of the object is known, the spinal cord detection can

be solved efficiently by Hough transform. Hough transform is a feature extraction

method which tries to find the local maxima in the accumulator parameter space [28].

Since spinal cord is successfully detected on most slices, 3-D curve fitting is employed

to modify the wrong detection slices by interpolation of the spinal cord locations

on the previous and subsequent slices. The 3-D curve fitting is an algorithm that

constructs a curve that best fits to the series of 3-D data points. The following figure

shows the spinal cord detection results before and after the curve fitting process.

Dilation of the spine cord detection result is used to disconnect the vertebra from the
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Figure 2.10: Spine Anatomy figure. The above figure is from [15]

ribs and eliminate the spine region. 3-D thinning is applied to obtain the skeleton

of the ribs. Then based on the points on the rib skeleton, we construct a rib convex

hull.

2.3.2 Cost Function Computation

K-nearest neighborhood (kNN) is a method for classifying objects based on

training examples in the feature space. It is consisted of 2 steps: learning and classi-

fication. During the learning process, each voxel of the training image data is placed

in the feature space with class label according to its feature value. During the clas-

sification process, each voxel of the new image data is placed in the feature space

according to its feature value, and its k nearest neighbor is calculated, the probability

for the voxel to belong to certain class is calculated according to equation 2.4. Each

voxel is classified by a vote of its majority nearest neighbors in the feature space.
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Figure 2.11: Rib detection, hough transform is used to detect the circle region of the
spine(upper figure), and then 3-D curve fitting is applied to obtain a nice 3-D curve
and delete the noise points (lower figure).
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Figure 2.12: 3D thinning is applied to the ribs to obtain a skeleton, and then rib
convex hull is constructed based on the rib skeleton.

Figure 2.13: This figure shows the position relationship between rib convex hull and
lung.
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Figure 2.14 illustrates how kNN classifier works for classifying a new athlete as the

basketball player or Ping Pong player in the 2D feature space.

P (x ⊂ classA) =
n

k
(2.4)

, where n is defined as the number of voxels from voxel x’s k nearest neighbor point

set in the feature space that are also labeled as class A, here k equals to 10.

Figure 2.14: An example of knn classifier in a 2-D feature space and k=2: the hor-
izontal axis is weight axis, the vertical axis is the height axis, the yellow diamond
is the basketball player class, the red circle is the PingPong player class. The green
rectangle is a new athlete that we need to judge which class he/she belongs to, the
basketball or PingPong. Since the k (k=2) nearest objects of the green rectangle in
the feature space is 2 yellow diamonds, thus, the probability for the green rectangle
to belong to the basketball class is 1 and to the PingPong class is 0.

In our work, k is 10. In other words, each voxel is classified by a vote of its

10 nearest neighbors with distance weight in the feature space. Four pathological

thorax CT image are used as training data for the kNN classifier. For each training

data set, the positive pattern points are sampled from the manual lung segmentation
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surface mesh, and the negative pattern points are equally sampled along normal

direction of the manual lung segmentation surface mesh with distance range from

-10 to 10 to the mesh. Let I be the given volumetric image of n = X × Y × Z

voxels, where X, Y , Z denote the image sizes in x, y, and z directions, respectively.

The intensity level of each voxel (x, y, z) is denoted by I(x, y, z). The feature vector

F = fi(x, y, z), i = 1, 2...6 selected to distinguish lung boundary voxels from non-lung

boundary voxels is summarized in table 2.1. The detailed information about the

extracted feature is listed as follows:

Feature No Feature Description Image
1 intensity information CT image
2 gradient information CT image
3 distance from the rib convex hull extracted rib convex hull image
4 position relative to the spine extracted spine image
5 position relative to the spine extracted spine image
6 position along z axis CT image

Table 2.1: Summary of the features selected for the kNN classifier.

(1) Gray level information: the gray level information is the value of each pixel

in CT images. Each pixel value I(x, y, z) of CT image represents the X-ray mass

attenuation coefficient or the tissue electron density at each position. In the chest

X-ray image, bones are always brighter than the lung regions because compared with

the lung tissue, bones have a higher calcium, potassium, magnesium, and phosphorus

percentage which will result in a higher electron density and a larger attenuation

coefficient.

f1(x, y, z) = I(x, y, z) (2.5)
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(2) Gradient information: Gradient is only computed for the voxels with gray

level less than 0 HU and within the rib convex hull region so that large gradient

cause by the rib, muscle, and other structures is eliminated. Then gradient is invert

by multiplying a negative constant so that the boundary voxels with high gradient

will have small value in the inverted gradient image.

Ix = I(x, y, z)⊗Gx (2.6)

Iy = I(x, y, z)⊗Gy (2.7)

Iz = I(x, y, z)⊗Gz (2.8)

f2(x, y, z) =





0 I > 0 ∧ (x, y, z) 6∈ R

−√
I2
x + I2

y + I2
z I < 0

(2.9)

where G denotes the Gaussian kernel, R represents the rib convex hull region, sub-

script indicates the derivative, ⊗ is the cross convolution operation.

(3) Surrounding anatomical information: the ribs and the spine can provide an

anatomical coordinate for lung segmentation. The lung outer boundary and the rib

convex hull surface is very close. Thus, the distance from the rib convex hull surface

can be an useful anatomical information for lung segmentation. The distance from the

spine along x axis and y axis and the z value could also be useful information. Since

smaller distance from the spine along x axis (in the middle part on the transverse

view), larger distance from the spine along y axis (near the sternum), and larger z

value(near the diaphragm) means less information could be provided by convex hull
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distance (Figure 2.15). Thus, another 4 anatomical features, the distance from the

rib convex hull surface, the distances from the spine along x axis and y axis, and the

z value, are selected for the kNN classifier.

f3(x, y, z) = min{n ∈ N , (x, y, z) 6∈ (Rª nB)} (2.10)

f4(x, y, z) = x− lx(z) (2.11)

f5(x, y, z) = y − ly(z) (2.12)

f6(x, y, z) = z (2.13)

where B is a 3*3 erosion structure, ª denotes morphological erosion operation,

(lx(z), ly(z), z) is the spine cord location on the slice z.

Figure 2.15: An example of the position relationship between rib convex hull surface,
lung boundary and spine on transverse view.

After the feature vector extraction, each feature is normalized to have the

range from 0 to 1 according to:



www.manaraa.com

36

X̄ =
n∑

i=1

Xi (2.14)

std(X) =
n∑

i=1

(Xi− X̄)2 (2.15)

Xi′ = (Xi− X̄)/std(X) (2.16)

2.3.3 Boundary Adjustment

Graph search is an efficient approach to obtain global optimal surface segmen-

tation results that represent object boundaries in the volumetric data. The approach

converts the segmentation problem into a min cut max flow graph problem. The time

complexity of this algorithm is low-order polynomial, thus very efficient.

Graph G(N,E) consists of a set of nodes N and a set of edges E. Graph

Construction starts from the presegmentation result, which contains basic topolog-

ical information of the target surface. A triangulated mesh M is then constructed

using the marching cube method. The graph G(N,E) is built based on the mesh M

as follows. For each vertex vi ∈ M , a column of nodes N(vi, K), K = 0, 1...k...m− 1

is created in G. The direction of the column is set as the triangle normal. The num-

ber of nodes in each column m is determined by the required resolution. For each

node n(vi, k), a node weight w(vi, k) is assigned according to the equation 2.17, in

which node cost C(vi, k) is inversely related to the likelihood that the desired surface

contains the node. We try to find an optimal surface S such that (1) the target

surface intersects with exactly one node of each column, which keeps the original

topology of the presegmented surface; (2) the distance between two on-surface nodes

in the neighboring columns is in the pre-defined distance, which serves as a smooth-
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ness constraint; and (3) the total cost of nodes on the surface
∑

n(vi,k)∈S C(vi, k) is

minimized.

w(vi, k) =





C(vi, k) k = 0

C(vi, k)− C(vi, k − 1) k ∈ (0,m− 1]

(2.17)

To incorporate these constraints, two types of edges are added in our graph.

The intra-column edges make sure that the sought surface intersects each column ex-

actly one time. For each node of the column n(vi, k), a directed edge 〈n(vi, k), n(vi, k−

1)〉 with an infinite weight is added. To enforce the smoothness constraint, all nodes

in the neighboring columns within pre-defined distance (the smoothness constraints

∆) are connected by inter-column edges 〈n(vi, k), n(vj, max(0, k − ∆))〉. vi and vj

are neighborhood vertices with neighboring relationship specified by the mesh M.

Figure2.16 shows a typical example of graph construction for one 2-D slice from a

3-D image. Figure 2.17 illustrates the graph construction in our method. With the

constructed graph, an optimal cut in G minimizing the total node cost is computed,

which corresponds to the target surface. Note that the optimal cut can be calculated

efficiently using the maximum flow algorithm in a polynomial time [18].

2.4 Experimental Method

2.4.1 Validation Image Data

The lung segmentation algorithms were evaluated in two different human sub-

jects categories: (1) thorax CT images of normal volunteers taken at different lung

volumes and with B/B30 reconstruction filters; and (2) clinical thorax CT images

of subjects with lung diseases, such as emphysema, fibrosis, honeycombing, nodules,
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Figure 2.16: An example of graph construction for a 2D surface. Smoothness is
neighborhood node distance. Blue edges are the inter-column edges, pink edges are
the intra-column edges, nodes on the same column have the same color.

Figure 2.17: An example of graph construction for 3D surfaces. For each voxel the
surface normal is computed in order to decide the direction of building the columns.
The red arrow in above figure shows the surface normal direction.
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bronchietasis, granulona or combined. All studies involving humans were gathered

under a protocol approved by The University of Iowa institutional review board. All

images were acquired on a Siemens Sensation 64 multi-detector CT scanner (MDCT)

(Siemens Medical Solutions; Malverne, PA). Reconstructed slice thicknesses ranged

from 0.6 to 0.9 mm. The computer used for all of the experiments was a 2.00 GHz

Intel Xeon 4 core CPU workstation with 31.5 GB RAM.

Images of Normal Subjects: Data from 16 normal subjects was used to assess

lung segmentation accuracy. The detailed information of these 16 subjects is shown

in Table 2.2. The average age was 30.0625 years, and included 7 males and 9 females.

For each subject volumetric images covering the thorax were gathered at total lung

capacity (TLC) and functional residual capacity (FRC) at approximately 100 mAs.

Image reconstructions were performed using a soft (B/B30) reconstruction filter from

a single acquisition instead of the hard (D/B50) reconstruction filter. Considering all

combinations of subjects, lung volume, and filter, 32 data sets were available in all.

The automatic lung segmentation algorithm was applied to each of these data sets.

Images of Subjects with Lung Diseases: 21 clinical pathological lung CT data

sets from 19 abnormal subjects (Listed in Table: 3.4) were used to assess the per-

formance of the proposed segmentation method in the presence of lung disease. The

average age was 30.855 years, and included 6 males and 13 females. Each image was

read by a radiologist to confirm as abnormal lung case. 2 datasets were acquired at

TLC and 19 datasets were acquired at FRC. The lung segmentation algorithm was

applied to each of the 21 data sets.

The Gold Standard: To validate performance in the normal and pathological

lung CT images, the automatic lung segmentation results were compared with both



www.manaraa.com

40

Subject ID BRP No Age Gender
1 brp001 38 Male
2 brp016 23 Female
3 brp148 28 Male
4 brp028 37 Female
5 brp031 24 Male
6 brp042 24 Female
7 brp043 44 Female
8 brp047 23 Male
9 brp067 20 Male
10 brp072 22 Female
11 brp076 20 Female
12 brp133 24 Female
13 brp136 26 Female
14 brp038 60 Female
15 brp037 27 Male
16 brp035 41 Male

Table 2.2: Information of Normal Subjects.

Subject ID BRP No Age Gender Detail information
1 BPD916 1.25 Female prematurebaby
2 0639Z 26 Female asthma
3 1279A 27 Female asthma
4 brp019 27 Male benignnodule
5 brp021 33 Female benignnodule
6 0904S 25 Female asthma
7 1257Q 52 Female asthma
8 brp025 38 Male COPD, nodule
9 0840S 38 Female asthma
10 1275S 20 Female asthma
11 1623P 46 Female asthma
12 1818E 27 Male asthma
13 brp075 22 Female nodule
14 brp022 36 Male nodule
15 brp005 35 Male nodule
16 brp084 40 Female nodule, airtrapping
17 brp008 25 Male honeycombingtexture, bronchiectasis
18 1194S 21 Female asthma
19 1771E 47 Female asthma

Table 2.3: Information of Abnormal Subjects.
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a manually defined gold-standard and Hu’s method results. A human image analyst

manually traced the lung boundaries for each of the 53 data sets. Due to the large

size of the MDCT images (typically 512*512*500), manual segmentation is done by

editing Hu’s method segmentation result slice by slice from the transverse view.

2.4.2 Validation Criteria

Three criteria were used to compare the proposed method with Hu’s and

Method manual tracing. Sensitivity and specificity were used to measure the volume

overlap, while the hausdorff distance was employed to measure the border position ac-

curacy. In addition, the treat off between the run time and the segmentation accuracy

is analyzed in chapter 3. Geodesic active contour based method was tested on these

53 data sets(21 abnormal CT images and 32 normal CT images), while graph search

based method was trained by 4 abnormal CT images and tested on 6 pathological

CT data sets.

Paired-sample t-test was applied to evaluate whether our methods has signif-

icant improvement compared with Hu’s method. Paired-sample t-test is a statistical

hypothesis test. It is used to compare two sets of measurements in order to assess

whether their population means differ. Since sensitivity, specificity, and Hausdorff

distance were computed for both Hu’s method and our methods on the same test

data set, paired-sample t-test was used to compare the performance of our method

and Hu’s method. For example, it was used to see if our methods’ sensitivity is signif-

icantly higher than Hu’s method’s sensitivity. In addition, paired-sample t-test was

applied to evaluate whether our methods’ Hausdorff distance is significantly smaller

than Hu’s method’s Hausdorff distance.
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(1) sensitivity and specificity

sensitivity and specificity could be used as statistical measures of the segmen-

tation algorithm performance. Given the manual segmentation as the gold standard,

we computed sensitivity and specificity for both our methods results and Hu’s method

results.

Sensitivity, true positive rate, is the portion of the actual lung tissue pixel

in the manual segmentation mask that are detected by the segmentation algorithm.

Thus, sensitivity evaluates how effective of the segmentation algorithm when used on

lung pixels. The algorithm is perfect for lung pixel detection if the sensitivity is 1, and

random if the sensitivity is 0.5. The mathematical formula for calculating sensitivity

is given by:

Sensitivity =
TruePositive

TruePositive + TrueNegative
(2.18)

, where true positive means the pixel is both inside the manual segmentation lung

mask and the automatic segmentation lung mask, and true negative means the pixel

is inside the manual segmentation lung mask but outside the automatic segmentation

lung mask.

Specificity, true negative rate, is the portion of the actual background pixel in

the manual segmentation mask that are detected as background by the segmentation

algorithm. Thus, specificity illustrates how effective of the segmentation algorithm

when used on background pixels. The algorithm is perfect for background pixel

detection if the specificity is 1, and random if the specificity is 0.5. The mathematical
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formula for calculating specificity is given by:

specificity =
FalsePositive

FalsePositive + FalseNegative
(2.19)

, where false positive means the pixel is both outside the manual segmentation lung

mask and the automatic segmentation lung mask, and false negative means the pixel

is outside the manual segmentation lung mask but inside the automatic segmentation

lung mask.

(2) Border position accuracy:

Since the lungs have large volumes, high volume overlap rate could not measure

the small local boundary error. Hence, the Hausdorff distance between the manually-

defined lung boundaries and the computer-defined lung boundaries was used to access

the border position accuracy. Hausdorff distance measures the largest surface distance

between two contours by computing the distance between the set of non-zero voxels

of two image contours using the following formula.

whereh(A,B) = maxa∈Aminb∈B||a− b||, . (2.20)

H(A,B) = max(h(A,B), h(B, A)); (2.21)

(3) Effects of interpolated image resolution on runtime and segmentation ac-

curacy

The boundary adjustment step (the geodesic active contour process) accounts

for a large part of runtime which heavily depends on the image size. Thus, we

performed an experiment to examine the tradeoffs between runtime and accuracy
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during the boundary adjustment step. For each of the five abnormal thorax CT

images, we segmented the lung boundary at three different scales.
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CHAPTER 3
RESULTS

3.1 Evaluate Geodesic Active Contour based Method

The geodesic active contour based method was evaluated by 21 clinical thorax

CT images of 19 subjects with lung diseases, such as emphysema, fibrosis, honey-

combing, nodules or combined, and 32 thorax CT images of 16 normal subjects.

Sensitivity, specificity, Hausdorff distance, number of slices needed to edit, and time

efficiency were used as criteria to compare the geodesic active contour based method

with the Hu’s method.

In order to visually compare Hu’s method and our method, figure 3.1 gives

two examples of the pathological lung segmentation results of the geodesic active

contour based method, Hu’s method and manual tracing.

3.1.1 Segmentation Sensitivity

Sensitivity evaluates how effective of the segmentation algorithm when used

on lung pixels. The algorithm is perfect for lung pixel detection if the sensitivity

is 1, and random if the sensitivity is 0.5. The larger the sensitivity is, the better

the segmentation result is. Figure 3.2 illustrates the sensitivity of 21 abnormal lung

CT data sets using both the geodesic active contour based method results and Hu’s

method results with manual segmentation ground truth. Figure 3.3 illustrates the

sensitivity of 32 normal lung CT data sets using both the geodesic active contour

based method results and Hu’s method results with manual segmentation ground

truth. The dark blue bars represent the sensitivity of the geodesic active contour
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Figure 3.1: Geodesic active contour result of 2 cases. From left to right: transverse
view, cornal view, and sagittal view. First row: Hu’s method segmentation result
of case 1, second row: our method segmentation result of case 1, third row: Hu’s
method segmentation result of case 2, fourth row: our method segmentation result of
case 2.
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based method, the light blue bars represent the sensitivity of Hu’s method. In the

figures, the dark blue bars are the sensitivity of the geodesic active contour based

method segmentation result, while the light blue bars are the sensitivity of the Hu’s

method segmentation result. In figure 3.2 the light blue bars are always shorter than

the dark blue bars which means that for pathological lung data set the geodesic active

contour based method has a higher sensitivity than Hu’s method. In figure 3.3 the

light blue bars are almost the same as the dark blue bars which means that for normal

lung data set the geodesic active contour based method has similar sensitivity as Hu’s

method. One side paired t-test was employed to measure whether two methods are

statistically significant different with respect to the sensitivity. For 21 abnormal CT

images, the sensitivity of the geodesic active contour based method was 5.9% larger

on average than that of Hu’s method (statistically significant, p < 0.001). For 32

normal CT images, the sensitivity of the geodesic active contour based method was

0.7% larger on average than that of Hu’s method (statistically insignificant, p = 0.11).

Thus, from the sensitivity aspect, we could conclude for pathological lung CT data set

the geodesic active contour based method has better performance than Hu’s method,

and for normal lung CT data set these two methods are almost the same.

Dataset Category Hu’s Method GAC Method
Normal 0.985± 0.027 0.992± 0.006

Abnormal 0.928± 0.073 0.987± 0.011

Table 3.1: Sensitivity statistics summary.
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Figure 3.2: Sensitivity analysis plot of geodesic active contour based method on 21
abnormal thorax CT data sets.

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Hu's Method Sensitivity GAC Sensitivity

Figure 3.3: Sensitivity analysis plot of geodesic active contour based method on 32
normal thorax CT data sets.
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3.1.2 Segmentation Specificity

Specificity illustrates how effective of the segmentation algorithm when used

on background pixels. The algorithm is perfect for background pixel detection if the

specificity is 1, and random if the specificity is 0.5. The larger the specificity is, the

better the segmentation result is. Figure 3.4 illustrates the sensitivity of 21 CT data

sets using both the geodesic active contour based method results and Hu’s method

results with manual segmentation ground truth. The dark blue bars represent the

specificity of the geodesic active contour based method, the light blue bars represent

the specificity of Hu’s method. In the figures, the dark blue bars are the specificity

of the geodesic active contour based method segmentation result, while the light blue

bars are the specificity of the Hu’s method segmentation result. In the figure 3.4, 3.5,

The dark blue bars are almost the same as the light blue bars which means that the

geodesic active contour based method has similar specificity as Hu’s method. One

side paired t-test was employed to measure whether two methods are statistically

significant different with respect to the specificity. For 21 abnormal CT images, the

specificity of the geodesic active contour based method was 0.3% smaller on average

than that of Hu’s method (statistically significant, p < 0.001). For 32 normal CT

images, the sensitivity of the geodesic active contour based method was 0.3% smaller

on average than that of Hu’s method (statistically significant, p < 0.001). Although

the specificity of Hu’s method is statistically significant higher than that of geodesic

active contour based method, the specificity of both two methods is above 0.99 which

is near 1. Thus, we could conclude that for both abnormal and normal lung CT data

sets, Hu’s method is more conservative than geodesic active contour based method.
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Figure 3.4: Specificity analysis plot of geodesic active contour based method on 21
abnormal thorax CT data sets.
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Figure 3.5: Specificity analysis plot of geodesic active contour based method on 32
normal thorax CT data sets.

Dataset Category Hu’s Method GAC Method
Normal 0.999± 0.0001 0.996± 0.003

Abnormal 0.999± 0.0002 0.996± 0.003

Table 3.2: Specificity statistics summary.
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3.1.3 Boundary Position Accuracy

Since the lungs have large volumes, high volume overlap rate could not measure

the small local boundary error. Hence, the Hausdorff distance between the manually-

defined lung boundaries and the computer-defined lung boundaries was used to access

the border position accuracy. Hausdorff distance measures the largest surface distance

between two contours by computing the distance between the set of non-zero voxels

of two image contours. The algorithm is perfect for background pixel detection if

the Hausdorff distance is 0. The smaller the Hausdorff distance is, the better the

segmentation result is. Figure 3.6 illustrates the Hausdorff distance of 21 abnormal

CT data sets using both the geodesic active contour based method results and Hu’s

method results with manual segmentation ground truth. Figure 3.7 illustrates the

Hausdorff distance of 32 normal CT data sets using both the geodesic active contour

based method results and Hu’s method results with manual segmentation ground

truth. The dark blue bars represent the Hausdorff distance of the geodesic active

contour based method, the light blue bars represent the Hausdorff distance of Hu’s

method. In figure 3.6, 3.7, the dark blue bars are the Hausdorff distance of the

geodesic active contour based method segmentation result, while the light blue bars

are the Hausdorff distance of the Hu’s method segmentation result. For most ab-

normal and normal cases, the dark blue bars are shorter than the light blue bars

which means that the geodesic active contour based method has shorter Hausdorff

distance than Hu’s method. One side paired t-test was employed to measure whether

two methods are statistically significant different with respect to the Hausdorff dis-

tance. For 21 abnormal CT images, the Hausdorff distance of the geodesic active

contour based method was 12.65 pixel smaller on average than that of Hu’s method
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(statistically significant, p < 0.001). For 32 normal CT images, the sensitivity of the

geodesic active contour based method was 6.97 pixel smaller on average than that of

Hu’s method (statistically significant, p < 0.002). Thus, from the Hausdorff distance

aspect we could conclude that geodesic active contour based method is better than

Hu’s method for both normal and abnormal thorax CT data sets.

Figure 3.6: Hausdorff Distance analysis plot of geodesic active contour based method
on 21 abnormal thorax CT data sets.

Figure 3.7: Hausdorff Distance analysis plot of geodesic active contour based method
on 32 normal thorax CT data sets.
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Dataset Category Hu’s Method(unit: pixel) GAC Method(unit: pixel)
Normal 27.60± 9.63 20.63± 6.70

Abnormal 32.80± 9.65 20.15± 8.15

Table 3.3: Hausdorff distance statistics summary.

3.1.4 Trade Off between Run time and Accuracy

The geodesic active contour process accounts for a large part of runtime which

heavily depends on the image size. Thus, we performed an experiment to examine

the tradeoffs between runtime and accuracy during the boundary adjustment step.

For each of the 5 abnormal thorax CT images, we segmented the lung boundary at

three different scales. Figure 3.8, 3.9, 3.10 illustrate the running time at three

different scales. For scale 0, the image size was 512 ∗ 512 ∗ slicenumber; for scale

1, the image size was 256 ∗ 256 ∗ slicenumber/2; for scale 2, the image size was

128 ∗ 128 ∗ slicenumber/4. Figure 3.11 illustrates the relationship between the mean

and standard deviation of the running time and the image size.

Figure 3.8: Running time plot of 5 test CT data set at scale 0.
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Figure 3.9: Running time plot of 5 test CT data set at scale 1 .

Figure 3.10: Running time plot of 5 test CT data set at scale 2.

Figure 3.11: This figure illustrates the relationship between the running time and the
image size.
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Scale Time(s) Sensitivity Specificity Hausdorff Distance(unit:pixel)
0 3634.8± 600.5718 0.970± 0.040 0.997± 0.003 19.52± 6.41
1 483± 64.3374 0.939± 0.053 0.998± 0.001 22.13± 6.49
2 102.4± 14.2253 0.877± 0.061 0.998± 0.001 42.71± 14.93

Table 3.4: Mean and standard deviation of the running time of the 5 test CT data
set at three different scales.

Figure 3.12: This figure shows the geodesic active contour based method results on
three different scales. From left to right: scale0, scale1, scale0, where Z denotes the
total slice number of the CT image data sets.

Figure 3.13: This figure shows the enlarged geodesic active contour based method
results on three different scales. From left to right: scale2, scale1, scale0.
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3.1.5 Multi-threading

With the advancement in the computer hardware, multi-threading is becoming

an increasingly important since it can speed up the program by making best use

of available CPU cycles. On a single-core computer, multi-threading is done by

switching the processor between different threads. While on a multi-core computer,

multi-threading is accomplished by running multiple threads at the same time, with

each CPU running a particular thread. Since all the experiments were done on a 2.00

GHz Intel Xeon 4 core CPU workstation with 32 GB RAM, we could run multi-task

at the same time on different cores. For example, initial model and speed image were

computed concurrently, the left lung boundary adjustment and right lung boundary

adjustment happened at the same time one different cores. A summary of the run time

improvement by multi-threading is shown in table 3.5 and figure 3.14. We could find

that the run time of the multi-threading program is half of the single thread geodesic

active contour based program. It takes around 5 minutes to run the geodesic active

contour based method on one CT data set at scale 1.

Method Preprocessing GAC Postprocessing Total
Singlethreading 91.8± 21.6 371.4± 143.4 19.8± 3.34 483.0± 143.8
Multithreading 54.8± 7.49 200.0± 90.0 16.8± 4.32 271.6± 94.79

Table 3.5: Run time of the geodesic active contour based method implementations
with and without multi-threading on five test CT image at scale 1.(unit: second).
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Figure 3.14: Runtime comparison plot between single thread implementation and
multi-thread implementation on five test data sets.

3.2 Evaluate Graph Search Based Method

The graph search based method was evaluated by 15 clinical thorax CT im-

ages of 15 subjects with lung diseases, such as emphysema, fibrosis, honeycombing,

nodules or combined. To validate performance in the pathological lung CT images,

the graph search based pathological lung segmentation results were compared with

both a manually defined gold-standard and Hus method results. Three criteria, sen-

sitivity, specificity, and Hausdorff distance, were used to compare the graph search

based method with Hu’s method and manual segmentation.

In order to visually compare Hu’s method and graph search based method,

figure 3.15 gives one examples of the pathological lung segmentation results of the

graph search based method, Hu’s method and manual tracing.

3.2.1 Segmentation Sensitivity

Sensitivity evaluates how effective of the segmentation algorithm when used

on lung pixels. The algorithm is perfect for lung pixel detection if the sensitivity is

1, and random if the sensitivity is 0.5. The larger the sensitivity is, the better the
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Figure 3.15: Examples of lung segmentation result, from left to right: Hus method
result, manual segmentation, graph-search based method result.

segmentation result is. Figure 3.16 illustrates the sensitivity of 15 abnormal lung

CT data sets using both the graph search based method results and Hu’s method

results with manual segmentation ground truth. In figure 3.16, the red bars represent

the sensitivity of the graph search based method, while the blue bars represent the

sensitivity of Hu’s method. The blue bars are always shorter than the red bars which

means that for pathological lung data set the graph search based method has a higher

sensitivity than Hu’s method. The table 3.6 shows the sensitivity of the graph search

based method was 7.71% higher on average than that of Hu’s method(statistically

significant, p < 0.002). Thus, from the sensitivity aspect, we could conclude for

pathological lung CT data set the graph search based method is better than Hu’s

method.
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Figure 3.16: Sensitivity analysis plot of graph search based method on 15 abnormal
thorax CT data sets.

3.2.2 Segmentation Specificity

Specificity illustrates how effective of the segmentation algorithm when used

on background pixels. The algorithm is perfect for background pixel detection if the

specificity is 1, and random if the specificity is 0.5. The larger the specificity is, the

better the segmentation result is. Figure 3.17 illustrates the specificity of 15 abnormal

lung CT data sets using both the graph search based method results and Hu’s method

results with manual segmentation ground truth. In figure 3.17, the red bars represent

the specificity of the graph search based method, while the blue bars represent the

specificity of Hu’s method. The blue bars have almost the same height as the red

bars which means that for the graph search based method has similar specificity as

Hu’s method. Thus, from the specificity aspect, we could conclude Hu’s method is

more conservative than the graph search based method.

3.2.3 Boundary Position Accuracy

Since the lungs have large volumes, high volume overlap rate could not measure

the small local boundary error. Hence, the Hausdorff distance between the manually-
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Figure 3.17: Specificity analysis plot of graph search based method on 15 abnormal
thorax CT data sets.

defined lung boundaries and the computer-defined lung boundaries was used to access

the border position accuracy. Hausdorff distance measures the largest surface distance

between two contours by computing the distance between the set of non-zero voxels

of two image contours. The algorithm is perfect for background pixel detection if

the Hausdorff distance is 0. The smaller the Hausdorff distance is, the better the

segmentation result is. Figure 3.18 illustrates the Hausdorff distance of 15 abnormal

CT data sets using both the graph search based method results and Hu’s method

results with manual segmentation ground truth. The red bars represent the specificity

of the graph search based method, while the blue bars represent the specificity of

Hu’s method. In figure 3.18, the blue bars are always shorter than the red bars which

means that for pathological lung data set the graph search based method has a shorter

Hausdorff distance than Hu’s method. The table 3.6 shows the Hausdorff distance

of the graph search based method was 16.8 pixels smaller on average than that of

Hu’s method(statistically significant, p < 0.001). Thus, from the Hausdorff distance

aspect, we could conclude that the graph search based method is better than Hu’s

method.
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Figure 3.18: Hausdorff distance analysis plot of graph search based method on 15
abnormal thorax CT data sets.

Method Sensitivity Specificity Hausdorff Distance
Hu′s 0.908± 0.083 0.999± 0.001 30.1± 12.1

GraphSearch 0.986± 0.011 0.995± 0.003 13.3± 4.7

Table 3.6: Summary of graph search based method evaluation.

3.2.4 Efficiency

The graph search algorithm is an efficient approach to obtain a globally optimal

segmentation surface that represent object boundary. It converts the segmentation

problem into a maximum flow problem. The algorithm time complexity is low-order

polynomial, is thus very efficient. The averaged running time of the graph search

based method is around 5 minutes which is much faster than single threaded geodesic

active contour based method, but similar to the multi-threaded geodesic active con-

tour based method.

3.3 Results on Sheep CT data

The geodesic active contour method was also tested on the sheep CT data set.

Figure 3.19 gives an example of sheep thorax CT data set segmentation result using
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geodesic active contour combined with the registration result. Rigid and non-rigid

registration based on the rib information were employ to register two rib cages. Step

by step registration result is shown in Fig 3.20, 3.21, 3.22 . The transformation

obtained from the registration was used to map the lung region of the template

image to the moving image. The mapped lung region near the spine was combined

with the geodesic active contour based method. Although the segmentation result is

better compared with intensity only based method, We still have problem near the

diaphragm.
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Figure 3.19: The segmentation result of one sheep thorax CT data set using geodesic
active contour.
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Figure 3.20: The overlap between ribs of two subjects before registration. The yellow
region is the overlapped region. The red and green region are the non-overlapped
region.
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Figure 3.21: The overlap between ribs of two subjects after rigid registration. The yel-
low region is the overlapped region. The red and green region are the non-overlapped
region.
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Figure 3.22: The overlap between ribs of two subjects after non-rigid registration.
The yellow region is the overlapped region. The red and green region are the non-
overlapped region. We can see from the aboving figure, the green and red region size
reduces, almost every region is yellow which means an excellent rib registration.
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CHAPTER 4
DISCUSSION

4.1 Geodesic Active Contour vs Graph Search

In this section, the geodesic active contour based method and the graph search

based method are compared from the running time, sensitivity, specificity and Haus-

dorff distance aspects. Figure 4.1 4.2 4.3 show the comparison result between these

two methods. From the sensitivity and specificity aspects, the geodesic active contour

and the graph search algorithm are very similar. From the Hausdorff distance aspect,

the graph search based method are a little better than the geodesic active contour

method.

0.50
0.55
0.60
0.65
0.70
0.75

0.80
0.85
0.90
0.95
1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Figure 4.1: The sensitivity plot of the geodesic active contour based method and the
graph search based method.
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Figure 4.2: The specificity plot of the geodesic active contour based method and the
graph search based method.

Figure 4.3: The hausdorff distance plot of the geodesic active contour based method
and the graph search based method.
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4.2 Limitations and Future Improvements

Here, we tried to run the algorithm at three different scales simultaneously by

using multi-threading to speed up the whole algorithm. The mean running time of

the geodesic active contour method for one CT data set is around 5 minutes which

is a little bit time consuming. P. Muyan-Ozcelik et al. [21] implement the Demons

registration using the CUDA which speed up the registration ten times faster. It will

be very helpful if we could use GPU programming (such as CUDA) to parallel the

algorithms and to speed up the whole algorithm.

When the lung region has a large abnormal tissue near the diaphragm, both

two segmentation algorithms might have problem with the region near the diaphragm.

Because near the diaphragm, the lung bottom surfaces always change its shape with

the contract of the diaphragm during different breathing phases. When segmenting

the lung from the thorax CT images, we have no breath phase information or lung

bottom surface shape information. It would be interesting if we could construct a 4D

lung shape model to help the lung segmentation.

Moveover, it would be also interesting if we could use the rib and spine frame-

work relative position information to detect the breath phase and then use the breath

phase information to help the segmentation. During the inhalation phase, the di-

aphragm contracts, the ribcage expands and the contents of the abdomen are moved

downward which will result the change of the lung bottom surface position and cur-

vature. After the classifier are trained with large CT data sets to learn the breathing

phase features, it will provide the phase information based on the initial lung segmen-

tation, rib and spine detection result. Then in return, the breath phase information

could help the lung segmentation. The phase detector could also help the lung disease
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detection. For example, if there are large lung regions with very low intensity(below

900) in the FRC CT images, the subject are more likely to have emphysema. How-

ever, it would be a normal subject if the large low intensity lung region appears in

the TLC CT images.
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CHAPTER 5
CONCLUSION

We have described two algorithms that try to combine surrounding anatomical

information, intensity, gradient, boundary smoothness to obtain an optimal segmen-

tation for pathological lung region in thorax CT images. Geodesic Active contour

and graph search algorithm are used to adjust the boundary to obtain an more ac-

curate lung segmentation. We tested the geodesic active contour based method on

21 abnormal CT data sets and 32 normal CT data sets. We compare the segmenta-

tion result with Hu’s method. For the 21 abnormal data sets, the sensitivity of the

geodesic active contour is much higher than that of Hu’s method. The specificity of

the geodesic active contour method is similar as that of Hu’s method. The Hausdorff

distance of the geodesic active contour method is much smaller than that of Hu’s

method. For the 32 normal data sets, the sensitivity, specificity, and the Hausdorff

distance of the geodesic active contour and Hu’s method are very similar. Thus, for

the abnormal thorax CT data set geodesic active contour have a better performance

than Hu’s method, while for the normal thorax CT data set geodesic active contour

and Hu’s method both performance very well. Moreover, the geodesic active contour

based method could attain a more smooth cut between the airway/vessel and the lung

region. Additionally, we trained the graph search cost function using 4 pathological

lung CT data sets and tested on 15 pathological thorax CT data sets. The result

is also compared with Hu’s method, from the sensitivity and Hausdorff aspects, the

graph search based method is much better than Hu’s method. For the specificity, the

graph search based method and Hu’s method are similar. Hence, we conclude that
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we developed two pathological lung segmentation algorithms which had a better per-

formance than Hu’s method for abnormal thorax CT data sets, such as emphysema,

fibrosis, honey combing lungs.
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